
BY RUSS EVANS

WWW.NASPA.COM

INTRODUCED in the ’60s, IBM’s CICS has
become the Teleprocessing

Monitor of choice for companies around the world. While
CICS’ popularity is due in large part to its scalability and reli-
ability, the amazing customizability
of the CICS environment no doubt
plays a significant role.

This article will not attempt to
describe the standard customization
options available with CICS, but
rather will briefly describe two of the
more powerful facilities: GLobal User
Exits (GLUEs) and Task Related User
Exits (TRUEs).

THE CICS CUSTOMIZATION
GUIDE

The documentation for exits is
maintained in the CICS Customization
Guide. Since the exit points and the
facilities available to the exit can
change dramatically between CICS
releases, you must have the cus-
tomization guide for the release of
CICS in which you intend your exit to
run. You will find that it is worth the
additional expense of acquiring a hard copy of this manual, as
you will want to make notes in the text for future reference.

THE GLOBAL USER EXITS

The primary difference between Global and Task Related
exits is the event that causes them to be executed. Global exit

programs are executed when an event occurs within CICS
(for example, when an abend occurs), and they run as part of
CICS; Task Related exit programs are executed when a task
requests it, and run as part of the task.

Because Global exits are event-
driven, the customization guide
groups them together according to
the domain in which they run. This
can be confusing, as the event points
within a domain may not seem to be
logically connected (for example,
the program control exit points
include XPCREQ, which is invoked
prior to an EXEC CICS LINK, and
XPCTA, invoked after an abend has
been detected). For this reason, I
always scan the Alphabetical List of
Global Exit Points found at the
beginning of the chapter on GLUEs.
This list contains a one-line descrip-
tion of each exit, providing a cursory
review to identify potential exit
points for further research.

When deciding on which exit point
to use, one of the critical issues you
must confront is what CICS services
will be available? The customization

guide provides a detailed description of the restrictions for
each exit point. For example, the description of the XPCTA
exit point indicates that all XPI calls can be used, but no SPI or
API calls can be used. However, the XDUCLSE documenta-
tion states that only the XPI call WAIT_MVS is valid. It is
essential that the programmer be aware of all of the exit point’s
limitations when deciding among multiple possibilities.

Using GLUEs and TRUEs
in CICS

One of the reasons for the enduring popularity of CICS is its ability to be tailored to fit the
needs of each shop. This article briefly describes two of CICS’ more powerful customization

facilities —Global User Exits (GLUEs) and Task Related User Exits (TRUEs) — and how you can use
them to manage events with CICS.

TECHNICAL SUPPORT • OCTOBER 200220

Once you have determined
that an exit is required,
the essential decision in
determining whether to
use a GLUE or a TRUE is

this: If you are required to
manage an event (such as
file I/O) within CICS, use a
GLUE. If the requirement is

to manage all tasks,
or a grouping of tasks,

use a TRUE.

Another critical point to keep in mind
when designing a solution that requires a
GLUE is the lack of upward compatibility
provided by CICS. IBM states that neither
source nor object compatibility is guaran-
teed between releases, and exit points can
be changed or even removed. If your instal-
lation uses GLUEs, you must research each
one as part of new release planning for each
new CICS release you install.

THE XPI

CICS provides the exit Programming
Interface (XPI), which is an alternative to
the command level API for use at Global
exit points. The XPI is a macro style language,
with the macro name being dependent on
the domain providing the service. As usual,
all documentation pertaining to the XPI can
be found in the customization guide, but the
most critical points are:

● exit programs must be written in
Assembler language

● exit programs must be written to
31-bit specifications (and return in
31-bit mode)

● exit programs must be fully reentrant
(not just quasi-reentrant)

● prior to issuing an XPI call, the
contents of UEPSTACK in the
DFHEUPAR area must be loaded
into register 13

● XPI calls use registers 0, 1, 14, and 15

Most importantly, because Global user exit
programs execute as if they were part of the
base CICS code, if the exit program
abends, issues a wait, or violates any of the
restrictions given in the customization
guide, it can cause unpredictable results for
the CICS region, potentially including
region failure.

If the GLUE program will use XPI calls, it
must include a DFHEUXIT TYPE=XPI-
ENV macro call. This macro builds dsects
and equates that are common to all XPI calls;
in addition, each XPI macro has an accom-
panying copy member that you must include
in your program’s working storage area. The
macros use a naming convention of
DFHaabbX, with the related copybook being
DFHaabbY, where aa is the two-character

WWW.NASPA.COM

domain identifier, and bb is a functional identifier. The macros use a
standard coding style, as shown in Figure 1.

Looking at this macro invocation from the beginning,
DFHSMMCX is the macro for storage control getmain/freemain.
CALL indicates that this invocation should result in an actual
getmain/freemain call to CICS (CICS allows the programmer to
build the parm list incrementally by omitting the CALL option).
CLEAR is used to clear out the DFHSMMCY parm list prior to
building the parms for this CALL. IN and OUT are used to distin-
guish between input and output parms — for example, ADDRESS
would be an output parm on a getmain, but an input parm on a
freemain — and FUNCTION identifies which function of the
macro is to be called.

Note the use of ‘*’ in some of the parms; this is used to tell CICS
that the target of the parm is to be the related field in the parm
copybook. RESPONSE(*) on this sample command will put the
return code into SMMC_RESPONSE, relieving the programmer
from having to acquire additional storage for that field. Be care-
ful to check the proper RESPONSE field, as checking
SMSR_RESPONSE when the return code is in SMMC_RESPONSE
could cause incorrect results. Because the macro requires access to
the copybook fields, failure to include the copy member will result
in assembly errors.

Some exit points allow the GLUE program to control processing
of the event with return code settings. When coding a GLUE, the
programmer must identify which return codes values are provided
for use by that exit point, and explicitly use one of the valid codes
on return:

RETURN (14,12),RC=UERCNORM

Always use the equated field to set the code, rather than the actual
value. These values are not guaranteed to remain consistent from
release to release. Note that the incorrect coding of the return code
value can cause very unpredictable results.

Some exit points allow the use of a subset of the command level
API. It is important to follow the limitations in the manual explicitly.

INFORMATION PROVIDED AT ENTRY

CICS provides some information to your exit program when it is
invoked, via a parm area addressed in register 1. Certain informa-
tion (such as the address and length of the global work area, or
GWA) is passed to all exit points; additionally, each exit point
receives data tailored to its interests. The general information is
described in the customization guide under the DFHEUPAR dsect,
but the data areas are generated using the DFHUEXIT macro.
Because each exit point is provided unique information in its parm
area, the DFHUEXIT macro provides the following parm list to tell
it which exit points will be used:

DFHUEXIT TYPE=EP,ID=exit-point-id

THE GLOBAL WORK AREA

CICS provides for a common GWA to be used for all occurrences
of a specific user exit program, or for a GWA shared between mul-
tiple programs. To acquire a GWA, include the desired length in the
GALENGTH() option of the ENABLE PROGRAM command used

to activate the exit. The address and length of the GWA are
automatically supplied to the exit program; this information can
be acquired by a command level program via the EXTRACT
EXIT command.

The GWA can be used for any purpose, but is usually reserved
for control information, counters, etc., that are required by the exit
program at execution time.

CONTROLLING THE EXIT PROGRAM

You must activate the exit program at the desired exit point
before CICS will use it. This can be performed using CECI during
initial testing, but is more appropriately performed by an initial-
ization program. The exit can be enabled at PLTPI time, although
there are restrictions on actually running exit programs before
startup has completed.

To activate the exit, use the START option of the ENABLE PRO-
GRAM(‘PGM-NAME’) EXIT(‘EXIT-POINT’) GALENGTH(LEN)
command. Note that the GALENGTH is optional; omitting it will
result in no GWA being acquired. To terminate the exit program,
use the DISABLE PROGRAM(‘pgm-name ‘) EXIT(‘exit-point’)/
EXITALL command.

Use of the EXITALL option will disable the program for all exit
points, whereas the use of the EXIT option will limit the disable to
that exit point only. It is not necessary to terminate most exit pro-
grams before shutting down CICS.

TASK RELATED USER EXITS

While TRUEs were originally designed to support non-IBM
file formats and Database Management Systems (DBMSes), they
now have a variety of uses. Application programs can access the
TRUE program directly via the DFHRMCAL macro (or through
a high-level language CALL to a stub program that issues the
DFHRMCAL). Alternatively, you can set up the TRUE to acti-
vate automatically at task start without a DFHRMCAL being
issued. Regardless of how the TRUE has been called, the TRUE
program itself can request that it be called again at task termination
or syncpoint processing.

To request that the TRUE be called as each task is initialized, use the
TASKSTART option of the ENABLE command that you use to enable
the TRUE. If the TRUE must be activated again at task termination or
syncpoint, the TRUE program must update the flags pointed to by the
UEPFLAGS parm in DFHEUPAR. UEFMTASK is the task termina-
tion indicator, and UEFDSYNC is the syncpoint manager indicator.

WWW.NASPA.COMTECHNICAL SUPPORT • OCTOBER 200222

DFHSMMCX CALL,
CLEAR,
IN,
FUNCTION(GETMAIN),
GET_LENGTH((Rn)),
SUSPEND(NO),
INITIAL_IMAGE(X’00’),
STORAGE_CLASS(USER),
OUT,
ADDRESS((Rn)),
RESPONSE(*),
REASON(*)

FIGURE 1: AN EXAMPLE OF AN XPI
MACRO TO ISSUE A CICS GETMAIN

Because these are bit flags, they must be ORd
in rather than moved.

WRITING THE STUB PROGRAM

The “stub” program is a simple program
written in Assembler language that handles
the CALL from a high-level language to the
TRUE program. The stub is responsible for
issuing the DFHRMCAL macro that results
in a call to the TRUE program. Note that the
DFHRMCAL macro does not issue a BALR
14,15 (the standard call); the stub program
is expected to keep the Register 14 value it
received from the high-level language pro-
gram call in place; the TRUE will return
directly to the high-level language program
after it has completed processing.

The syntax of the DFHRMCAL is quite
simple:

DFHRMCAL TO=pgm-name

WORK AREAS FOR THE
TRUE PROGRAM

When the TRUE program is called, CICS
provides a full Command Level environ-
ment for it, including DFHEISTG. However,
this environment is reset for each call to the
TRUE from within the same task, so no
information can be stored between invoca-
tions. To alleviate this restriction, use the
TALENGTH option of the ENABLE com-
mand to create the equivalent of a TWA for
the TRUE that will exist for the life of the
task. UEPTAA provides the address of the
TWA. The ENABLE command also pro-
vides for a GWA for the TRUE, which is
created and accessed in the same manner as
for Global User Exits.

RESTRICTIONS

While there are significantly more CICS
facilities available to the TRUE program
than for a GLUE, there are important
restrictions. It is important to keep the fol-
lowing restrictions in mind when designing
and coding your TRUE:

● You must use DFHEIRET to return
if you have coded the DFHEIENT
macro (or if it has been added by
the translator).

● If your TRUE has been called at task
termination, do not update any

recoverable resources, as the CICS
Syncpoint Manager has already run.

● Since all resources except task
storage have been freed before a
TRUE is called at task termination,
resource level security may not
function correctly.

● IBM states that you “must understand
fully the circumstances in which the
function shipping conversation may be
terminated” if the TRUE attempts to
access remote resources at task
termination. This is misleading, and
should simply state that remote
resources cannot be used, as the
sessions will not be freed after the
TRUE completes.

CONCLUSION

Between the two types of user exits they
provide a powerful facility for customizing
CICS to meet the requirements of your
installation. However, they come with a
price. Before making the decision to use a

GLUE or a TRUE to customize your CICS,
you must carefully consider their draw-
backs, including the potential to destabilize
your regions.

Once you have determined that an exit
is required, the essential decision in deter-
mining which to use a GLUE or a TRUE
events vs. tasks is this: If you are required
to manage an event (such as file I/O) within
CICS, use a GLUE. If you are required to
manage all tasks, or a grouping of tasks,
use a TRUE.

Questions or comments? Please email
editor@naspa.com.

Russ Evans is the owner of R. E. Evans
Consulting LLC, an international firm spe-
cializing in highly technical projects in the
mainframe environment. He can be reached
at russevans@reevans.com, or visit his Web
site at www.reevans.com.

TECHNICAL SUPPORT • OCTOBER 2002WWW.NASPA.COM 23

